

Technology Opportunity

Room temperature compressed air-stable conductive copper films

A continuous-flow process producing oxidation-resistant copper inks that form air-stable, high-conductivity films at room temperature for low-cost, scalable flexible electronic components.

In Brief

This invention uses a natural polymer to produce airstable copper particles. These particles are prepared through compression at room temperature without sintering. As an ink, this technology can form conductive films on a wide range of heat-sensitive substrates enabling flexible printed electronics. A PCT patent has been published (WO2025022126A1) and this TRL 4 technology available for licensing, codevelopment or commercial partnerships.

Key Benefits

- · Room temperature, sintering-free copper inks
- · Air-stable, high-conductivity films
- · Scalable continuous flow production
- · Designed for flexible electronics

Fig 1: Schematic representation showing fabrication of Cu films

Technical Summary

This technology uses biopolymer-stabilised copper particles that compress at room temperature to form air-stable, low-porosity (<4.6%) conductive films with low resistivity (2.05 $\times 10^{-8}\,\Omega m$ at 20 °C). Sub-micron particle sizes (~227 nm) deliver precise, high-performance films, and the aqueous ink is compatible with pen-based and printing deposition methods on substrates, including paper, plastics, and textiles.

This sintering-free method has been demonstrated at gram scale and through continuous flow production, supporting cost-effective scalability, rapid prototyping and on-demand manufacturing for flexible electronic components.

At TRL 4, the technology is suited to RFID, flexible circuits, wearable sensors, and other next-generation printed electronics. Compared with conventional silver and copper inks, it combines metallic-level conductivity, oxidation resistance, and compatibility with heat-sensitive substrates, while reducing reliance on costly or energy intensive metals.

Parameters	TRL 4 Cu-ink	Commercial Ag-ink
Resistivity	2.0–2.3 x10 ⁻⁸ Ωm at 20 °C	1.8 x10 ⁻⁵ Ωm at 150 °C
Conductivity	6.74 x10 ⁶ (S/m)	6.3 x10 ⁷ (S/m)
Processing	None	Thermal or photonic sintering (80–200 °C)

Fig 2: labprepared Cu ink

Fig 3: various Cu patterns on filter paper and physical deformation - no delamination of the Cu film occurs upon bending

Fig 4: smooth and highly reflective Cu patterns on PCB substrates and a typical sample used for four-terminal electrical measurements of films on PCB substrates

Fig 5: Cu ink produced at larger scale in a continuous flow reactor

Commercial Enquiries

Sarah Newman – Licensing Executive sarah.newman@nottingham.ac.uk